

SCOPE: Easy and Efficient Parallel Processing
of Massive Data Sets

Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey,
Darren Shakib, Simon Weaver, Jingren Zhou

Microsoft Corporation
{rchaiken, bobjen, palarson, brams, darrens, sweaver, jrzhou}@microsoft.com

ABSTRACT

Companies providing cloud-scale services have an increasing

need to store and analyze massive data sets such as search logs

and click streams. For cost and performance reasons, processing is

typically done on large clusters of shared-nothing commodity

machines. It is imperative to develop a programming model that

hides the complexity of the underlying system but provides flex-

ibility by allowing users to extend functionality to meet a variety

of requirements.

In this paper, we present a new declarative and extensible script-

ing language, SCOPE (Structured Computations Optimized for

Parallel Execution), targeted for this type of massive data analy-

sis. The language is designed for ease of use with no explicit par-

allelism, while being amenable to efficient parallel execution on

large clusters. SCOPE borrows several features from SQL. Data is

modeled as sets of rows composed of typed columns. The select

statement is retained with inner joins, outer joins, and aggregation

allowed. Users can easily define their own functions and imple-

ment their own versions of operators: extractors (parsing and con-

structing rows from a file), processors (row-wise processing),

reducers (group-wise processing), and combiners (combining

rows from two inputs). SCOPE supports nesting of expressions

but also allows a computation to be specified as a series of steps,

in a manner often preferred by programmers. We also describe

how scripts are compiled into efficient, parallel execution plans

and executed on large clusters.

1. INTRODUCTION
Internet companies store and analyze massive data sets, such as

search logs, web content collected by crawlers, and click streams

collected from a variety of web services. Such analysis is becom-

ing increasingly valuable for business in a variety of ways, for

example, to improve service quality and support novel features, to

detect changes in patterns over time, and to detect fraudulent ac-

tivity.

Due to the size of these data sets, traditional parallel database

solutions can be prohibitively expensive. To be able to perform

this type of web-scale analysis in a cost-effective manner, several

companies have developed distributed data storage and

processing systems on large clusters of shared-nothing commodity

servers, including Google‟s File System [8] , Bigtable [3], Map-

Reduce [5], Hadoop [1], Yahoo!‟s Pig system [2], Ask.com‟s

Neptune [4], and Microsoft‟s Dryad [6]. A typical cluster consists

of hundreds or thousands of commodity machines connected via a

high-bandwidth network. It is challenging to design a program-

ming model that enables users to easily write programs that can

efficiently and effectively utilize all resources in such a cluster

and achieve maximum degree of parallelism.

The Map-Reduce programming model provides a good abstraction

of group-by-aggregation operations over a cluster of machines.

The programmer provides a map function that performs grouping

and a reduce function that performs aggregation. The underlying

run-time system achieves parallelism by partitioning the data and

processing different partitions concurrently using multiple ma-

chines.

However, this model has its own set of limitations. Users are

forced to map their applications to the map-reduce model in order

to achieve parallelism. For some applications this mapping is

very unnatural. Users have to provide implementations for the

map and reduce functions, even for simple operations like projec-

tion and selection. Such custom code is error-prone and hardly

reusable. Moreover, for complex applications that require multiple

stages of map-reduce, there are often many valid evaluation strat-

egies and execution orders. Having users implement (potentially

multiple) map and reduce functions is equivalent to asking users

specify physical execution plans directly in database systems. The

user plans may be suboptimal and lead to performance degrada-

tion by orders of magnitude.

In this paper, we present a new scripting language, SCOPE (Struc-

tured Computations Optimized for Parallel Execution), targeted

for large-scale data analysis that is under development at Micro-

soft. Many users are familiar with relational data and SQL.

SCOPE intentionally builds on this knowledge but with simplifi-

cations suited for the new execution environment. Users familiar

with SQL require little or no training to use SCOPE. Like SQL,

data is modeled as sets of rows composed of typed columns.

Every rowset has a well-defined schema. The SCOPE runtime

provides implementations of many standard physical operators,

saving users from implementing similar functionality repetitively.

SCOPE is being used daily for a variety of data analysis and data

mining applications inside Microsoft.

SCOPE is a declarative language. It allows users to focus on the

data transformations required to solve the problem at hand and

hides the complexity of the underlying platform and implementa-

tion details. The SCOPE compiler and optimizer are responsible

for generating an efficient execution plan and the runtime for

executing the plan with minimal overhead.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the VLDB copyright notice and the title of the publication and its date ap-

pear, and notice is given that copying is by permission of the Very Large

Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the

publisher, ACM.

VLDB ’08, August 24-30, 2008, Auckland, New Zealand.

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

SCOPE is highly extensible. Users can easily define their own

functions and implement their own versions of operators: extrac-

tors (parsing and constructing rows from a file), processors (row-

wise processing), reducers (group-wise processing), and combin-

ers (combining rows from two inputs). This flexibility greatly

extends the scope of the language and allows users to solve prob-

lems that cannot be easily expressed in traditional SQL.

SCOPE provides functionality similar to views in SQL. This fea-

ture greatly enhances modularity and code reusability. It can also

be used to restrict access to sensitive data.

SCOPE supports writing a program using traditional nested SQL

expressions or as a series of simple data transformations. The

latter style is often preferred by programmers who are used to

thinking of a computation as a series of steps. We illustrate the

usage of SCOPE by the following example.

Example 1: A QCount query computes search query frequencies:

how many times different query strings have occurred. There are

several variants of QCount queries, for example, a QCount query

may return only the top N most frequent queries or it may return

queries that have occurred more than M times. Nevertheless, all

QCount queries involve simple aggregation over a large data set,

followed by some filtering conditions.

In this example, we want to find from the search log the popular

queries that have been requested at least 1000 times. Expressing

this in SCOPE is very easy.

SELECT query, COUNT(*) AS count

FROM "search.log" USING LogExtractor

GROUP BY query

HAVING count > 1000

ORDER BY count DESC;

OUTPUT TO "qcount.result";

The select command is similar to SQL‟s select command except

that it uses a built-in extractor, LogExtractor, which parses each

log record and extracts the requested columns. By default, a

command takes the output of the previous command as its input.

In this case, the output command writes the result of the select to

the file “qcount.result”.

The same query can also be written in SCOPE as a step-by-step

computation.

e = EXTRACT query

 FROM “search.log"

 USING LogExtractor;

s1 = SELECT query, COUNT(*) as count

 FROM e

 GROUP BY query;

s2 = SELECT query, count

 FROM s1

 WHERE count > 1000;

s3 = SELECT query, count

 FROM s2

 ORDER BY count DESC;

OUTPUT s3 TO “qcount.result";

The script is also easy to understand. The extract command ex-

tracts all query string from the log file. The first select command

counts the number of occurrences of each query string. The

second select command retains only rows with a count greater

than 1000. The third select command sorts the rows on count.

Finally, the output command writes the result to the file

“qcount.result”.

In either case, users do not need to implement any operators or

wonder how to efficiently execute the query on a large cluster.

The SCOPE compiler and optimizer are responsible for translating

a script into an efficient, parallel execution plan.

The rest of the paper is organized as follows. We first give an

brief overview of the software platform developed at Microsoft

for storing and analyzing massive data sets in Section 2. We

present the SCOPE scripting language in more detail in Section 3.

In Section 4, we describe other SCOPE components and show

how a SCOPE script is compiled, optimized, and executed. Expe-

rimental evaluation using TPC-H queries is provided in Section 5.

We discuss related work in Section 6 and conclude in Section 7.

2. PLATFORM OVERVIEW

Cosmos

Files

Cosmos Storage System

SCOPE Compiler

SCOPE Runtime

SCOPE

Optimizer

SCOPE Script

Cosmos Execution Environment

Figure 1: Cosmos Software Layers

Microsoft has developed a distributed computing platform, called

Cosmos, for storing and analyzing massive data sets. Cosmos is

designed to run on large clusters consisting of thousands of com-

modity servers. Disk storage is distributed with each server having

one or more direct-attached disks.

High-level design objectives for the Cosmos platform include:

1. Availability: Cosmos is resilient to multiple hardware fail-

ures to avoid whole system outages. File data is replicated

many times throughout the system and file meta-data is ma-

naged by a quorum group of 2f+1 servers so as to tolerate f

failures.

2. Reliability: Cosmos is architected to recognize transient

hardware conditions to avoid corrupting the system. System

components are check-summed end-to-end and apply me-

chanisms to crash faulty components. The on-disk data is pe-

riodically scrubbed to detect corrupt or bit rot data before it

is used by the system.

3. Scalability: Cosmos is designed from the ground up to be a

scalable system, capable of storing and processing petabytes

of data. Storage and compute capacity is easily increased by

adding more servers to the cluster.

4. Performance: Cosmos runs on clusters comprised of thou-

sands of individual servers. Data is distributed among the

servers. A job is broken down into small units of computa-

tion and distributed across a large number of CPUs and sto-

rage devices, significantly reducing job completion times.

5. Cost: Cosmos is cheaper to build, operate and expand, per

gigabyte, than traditional approaches to the same problem. It

is far more cost-effective to utilize large numbers of low-cost

servers to tackle these types of massive compute problems,

as opposed to buying a smaller number of expensive large-

scale servers.

Figure 1 shows the main components of the Cosmos platform.

1. Cosmos storage: A distributed storage subsystem designed to

reliably and efficiently store extremely large sequential files.

2. Cosmos execution environment: An environment for deploy-

ing, executing, and debugging distributed applications.

3. SCOPE: A high-level scripting language for writing data

analysis jobs. The SCOPE compiler and optimizer translate

scripts to efficient parallel execution plans.

In this paper, we focus on the SCOPE and its components. We

briefly describe other Cosmos components in this section. A de-

tailed description of the Cosmos platform is out of the scope of

this paper.

2.1 Cosmos Storage System
The Cosmos Storage System is an append-only file system that

reliably stores petabytes of data. The system is optimized for large

sequential I/O. All writes are append-only and concurrent writers

are serialized by the system. Data is distributed and replicated for

fault tolerance and compressed to save storage and increase I/O

throughput.

A Cosmos Store provides a directory with a hierarchical names-

pace and stores sequential files of unlimited size. A file is physi-

cally composed of a sequence of extents. Extents are the unit of

space allocation and are typically a few hundred megabytes in

size. A unit of computation generally consumes a small number of

collocated extents. Extents are replicated for reliability and also

regularly scrubbed to protect against bit rot.

The data within an extent consist of a sequence of append blocks.

The block boundaries are defined by application appends. Append

blocks are typically a few megabytes in size and contain a collec-

tion of application-defined records. Append blocks are stored in

compressed form with compression and decompression done

transparently at the client.

2.2 Cosmos Execution Environment
The lowest level primitives of the Cosmos execution environment

provide only the ability to run arbitrary executable code on a serv-

er. Clients upload application code and resources onto the system

via a Cosmos execution protocol. A recipient server assigns the

task a priority and executes it at an appropriate time. It is difficult,

tedious, error prone, and time consuming to program at this lowest

level to build an efficient and fault tolerant application.

In Cosmos, applications are programmed against the execution

engine that provides a higher-level programming interface and a

runtime system that automatically handles the details of optimiza-

tion, fault tolerance, data partitioning, resource management, and

parallelism.

An application is modeled as a dataflow graph: a directed acyclic

graph (DAG) with vertices representing processes and edges

representing data flows. The runtime component of the execution

engine is called the Job Manager. The JM is the central and coor-

dinating process for all processing vertices within an application.

The primary function of the JM is to construct the runtime DAG

from the compile time representation of a DAG and execute over

it. The JM schedules a DAG vertex onto the system processing

nodes when all the inputs are ready, monitors progress, and, on

failure, re-executes part of the DAG.

We refer readers to the Dryad paper [6] for details of an execution

engine that is built over the basic primitives of Cosmos. Dryad

implements a job manager and a graph building language for

composing vertices of computation and edges of communication

channels between the vertices.

3. SCOPE Scripting Language
The SCOPE scripting language resembles SQL but with C# ex-

pressions. This design choice offers several advantages. Its re-

semblance to SQL reduces the learning curve for users and eases

porting of existing SQL scripts into SCOPE. SCOPE expressions

can use C# libraries. Custom C# classes can compute functions of

scalar values, or manipulate whole rowsets.

A SCOPE script consists of a sequence of commands. Except for

a few auxiliary commands, commands are data transformation

operators that take one or more rowsets as input, perform some

operation on the data, and output a rowset. Every rowset has a

well-defined schema that all its rows must adhere to.

By default, a command takes the result rowset of the previous

command as input. As shown in Example 1, the output command

in the first SCOPE script takes the result of the previous select

command as its input. SCOPE commands can also take named

inputs and users can name the output of a command using as-

signment. The output of a command can be used by subsequent

commands one or more times. The second script in Example 1

shows an example of named inputs where e, s1, s2, s3 represent

the result of the corresponding command. Named inputs/outputs

enable users to write scripts in multiple (small) steps, a style pre-

ferred by some programmers.

SCOPE supports a variety of data types, including int, long,

double, float, DateTime, string, bool and their nullable counter-

parts. SCOPE uses C# semantics for nulls, which differs from

SQL null semantics. Null compares equal to null. Null compared

to a non-null value is always false. Null sorts high. The aggregates

ignore nulls in SCOPE.

A script writer can view operators as being entirely serial; map-

ping the script to an efficient parallel execution plan is handled

completely by the SCOPE compiler and optimizer.

3.1 Input and Output
As described earlier, Cosmos provides distributed storage for

massive data sets, such as site usage and click streams. While

SCOPE is mostly used to analyze data stored in Cosmos files, any

type of data store can be used as a data source or data sink.

Input data for a SCOPE script is obtained by means of built-in or

user-written extractors. SCOPE provides many standard extractors

such as a generic extractor for text files and more specific ones for

frequently used log files. However, input data does not have to

originate from files; a user could, for example, write an extractor

that pulls data from a database system. Similarly, SCOPE outputs

data by means of built-in or user-written outputters, regardless of

the type of data sink.

SCOPE provides two customizable commands, EXTRACT and

OUTPUT, for users to easily read in data from a data source and

write out data to a data sink.

EXTRACT column[:<type>] [, …]

FROM < input_stream(s) >

USING <Extractor> [(args)]

[HAVING <predicate>]

The extract command extracts data from some data source, usual-

ly a Cosmos file or a regular file, and outputs a sequence of rows

with the schema specified in the extract clause. Parsing the raw

input data and constructing output rows is most often done using

one of the standard extractors provided by SCOPE. The optional

having clause can be used to quickly filter the output; rows not

satisfying the predicate are immediately discarded.

Users can provide custom extractors by extending the C# class

“Extractor”. Figure 2 shows an example implementation of a cus-

tom extractor that extracts some columns from the lineitem file.

The “Extract” function is an iterator over output rows, that is, a

call returns the next output row. (The C# statement yield re-

turn outputRow returns the current row and the next call re-

sumes execution from there, not from the beginning of the func-

tion.) Users can also provides custom schema information by

overwriting the function “Produce”, which is called at compile

time. In this example, we assumes that records in the lineitem file

correspond to rows and columns are separated by „|‟. It extracts

the columns indicated in “requestCol” from records that have a

ship date later than „1998-10-01‟.

OUTPUT [<input>

 [PRESORT column [ASC | DESC] [, …]]]

TO <output_stream>

[USING <Outputter> [(args)]]

Similarly, the output command is used to write data to a Cosmos

file, a regular file, or any other data sink. This is the only way that

data can exit the system. Formatting a row for output is done by

calling the specified outputter, which can be one supplied by the

system or by the user through extending the C# class “Outputter”.

If no outputter is specified a default text outputter is used. The

optional presort clause specifies that the input stream is to be

sorted before rows are formatted and output.

3.2 Select and Join
SCOPE includes a select command that is patterned on SQL‟s

select statement.

SELECT [DISTINCT] [TOP count]

select_expression [AS <name>] [, …]

FROM { <input stream(s)> USING <Extractor> |

{<input> [<joined input> […]]} [, …]

 }

[WHERE <predicate>]

[GROUP BY <grouping_columns> [, …]]

[HAVING <predicate>]

[ORDER BY <select_list_item> [ASC | DESC] [, …]]

joined input:

 <join_type> JOIN <input> [ON <equijoin>]

join_type:

 [INNER | {LEFT | RIGHT | FULL} OUTER]

Nesting of commands in the from clause is allowed but subqueries

are not allowed. The select command can join multiple inputs

using inner or outer joins. Join order selection is currently heuris-

tic, preferring equijoins and then joins with other predicates. Pre-

dicates are pushed down before joins when possible.

Ten different aggregation functions are currently supported:

COUNT, COUNTIF, MIN, MAX, SUM, AVG, STDEV, VAR,

FIRST, and LAST. COUNTIF takes a predicate and counts only

public class LineitemExtractor : Extractor

{
 enum Cols{l_orderkey=0, l_partkey, l_suppkey, l_linenumber, l_quantity,

 l_extendedprice, l_discount, l_tax, l_returnflag, l_linestatus,

 l_shipdate, l_commitdate, l_receiptdate, l_shipinstruct, l_shipmode, l_comment};

 public override Schema Produce(string[] requestedColumns, string[] args)

 { return new Schema(requestedColumns); }

 public override IEnumerable<Row> Extract(StreamReader reader, Row outputRow, string[] args)

 { string line;

 int[] requestCol = new int[]{(int)Cols.l_quantity, (int)Cols.l_extendedprice,

 (int)Cols.l_discount, (int)Cols.l_tax,(int)Cols.l_returnflag,

 (int)Cols.l_linestatus, (int)Cols.l_shipdate};

 while ((line = reader.ReadLine()) != null) {

 string[] tokens = line.Split('|');

 if (tokens[(int)Cols.l_shipdate].Substring(0,10) > "1998-10-01") // filter on ship date

 continue;

 for (int i=0; i < requestCol.Length; i++) {

 if (requestCol [i] <= (int)Cols.l_tax)

 outputRow[i].Set(double.Parse(tokens[requestCol[i]]));

 else

 outputRow[i].Set(tokens[requestCol[i]]);

 }

 yield return outputRow;
 }

 }

}

Figure 2: Example Implementation of a Custom Extractor

the rows that satisfy the predicate. FIRST (LAST) returns the first

(last) row in the group. FIRST and LAST are nondeterministic if

the rows within a group are not sorted.

Disallowing subqueries does not reduce the expressive power of

the language because outer join is supported. Any subquery can

be handled by first computing the result of the main query block

and of the subquery block, then outer-joining the subquery result

with the main query result (using the predicates correlating the

main query to the subquery as join predicates), and finally filter-

ing the result using the predicate referencing the subquery.

Example 2: We rewrite the following SQL query so the subquery

is eliminated. The correlation predicate is the equality predicate

Sc = Rc in the subquery.

SELECT Ra, Rb

FROM R

WHERE Rb < 100

 AND (Ra > 5 OR EXISTS(SELECT * FROM S

 WHERE Sa < 20

 AND Sc = Rc))

Here is an equivalent script in SCOPE.

SQ = SELECT DISTINCT Sc FROM S WHERE Sa < 20;

M1 = SELECT Ra, Rb, Rc FROM R WHERE Rb < 100;

M2 = SELECT Ra, Rb, Rc, Sc

 FROM M1 LEFT OUTER JOIN SQ ON Rc == Sc;

Q = SELECT Ra, Rb FROM M2

 WHERE Ra > 5 OR Rc != Sc;

The first select (SQ) finds the S rows that satisfy the non-

correlation predicates, project them onto the S columns used in

the correlation predicate (Sc), and eliminates duplicates. The

second select (M1) begins processing of the main query by apply-

ing predicates that do not involve the subquery. The third select

(M2) outer-joins the previous result with the subquery result using

the correlation predicate. Outer join is used to guarantee that

every row from the main query is retained in the output. M1 rows

that do not join with any rows from SQ are null-extended on Sc.

The fourth select (Q) computes the final result by applying the

predicate referencing the subquery. Note that the predicate Rc !=

Sc is satisfied only for rows that are null-extended on Sc.

3.3 Expressions and Functions
Scalar expressions and predicates in SCOPE are translated into C#

expressions and predicates. This means that all functions and op-

erators available in C# are available in SCOPE. SCOPE also

makes it easy for users to write their own functions. The definition

of a user-defined function can be included right in the script file.

Example 3: The following script illustrates the use of C# string

functions and shows how to write a user-defined function. Col-

umns A, B and C are all of type string and, consequently, any of

the C# string functions can be used. The expression A+C denotes

string concatenation because both operands are strings. The C#

function “Trim” strips white space from the beginning and the end

of a string. The user-defined function “StringOccurs” counts the

number of occurrences of a given pattern string in an input string.

The function is written in C# and included in the script file in a

section delimited by #CS and #ENDCS.

R1 = SELECT A+C AS ac, B.Trim() AS B1

 FROM R

 WHERE StringOccurs(C, “xyz”) > 2

#CS

public static

int StringOccurs(string str, string ptrn)

{

 int cnt=0; int pos=-1;

 while (pos+1 < str.Length) {

 pos = str.IndexOf(ptrn, pos+1) ;

 if (pos < 0) break;

 cnt++;

 }

 return cnt;

}

#ENDCS

3.4 User-Defined Operators
For complex data mining and analysis applications, it may some-

times be complicated or impossible to express a desired operation

with SQL-like commands alone. Examples include complex data

manipulation, customized aggregates, etc.

SCOPE provides three highly extensible commands that manipu-

late rowsets: PROCESS, REDUCE and COMBINE. Users can

write customized operations by extending built-in C# components.

The code can also be easily reused in other SCOPE scripts.

The extensible commands provides the same functionality as the

map-reduce model described in [5] and the operations map, re-

duce, and merge described in [12]. These extensible commands

Figure 3: Example Implementation of a Custom Processor

public class TrimProcessor : Processor

{

 // This method is called at compile time to get column names and types of the output rows

 public override Schema Produce(string[] requestedColumns, string[] args, Schema inputSchema)

 { return new Schema(requestedColumns); }

 // This function trims all string valued columns and leaves others unchanged.

 public override IEnumerable<Row> Process(RowSet input, Row outRow, string[] args)

 {

 foreach (Row row in input.Rows) {

 row.Copy(outRow);

 for (int i=0; i < row.Count; i++) {

 if(outRow.Schema[i].Type == ColumnDataType.String){

 outRow[i].Set(outRow[i].String.Trim());

 }

 }

 yield return outRow;
 }

 }

}

complement SELECT, which offers easy declarative filtering,

joining, arithmetic, and aggregation. We now describe the three

commands and illustrate their usage.

3.4.1 Process
PROCESS [<input>]

USING <Processor> [(args)]

[PRODUCE column [, …]]

[HAVING <predicate>]

The process command takes a rowset as input, processes each row

in turn, and outputs a sequence of rows. The schema of the output

rowset is specified in the produce clause. The having clause is a

convenient shorthand – it can be used to post-filter the output

rows without the need for a separate select command.

The actual work of a process command is done by a user-written

processor. The processor receives one input row at a time, per-

forms some computation on the row, and outputs zero, one, or

multiple rows. Figure 3 shows a simple example processor which

trims all string valued columns and leaves others unchanged.

The process command is a very flexible command that enables

users to implement processing that is difficult or impossible to

express in SQL. An interesting feature is that the process com-

mand can return multiple rows per input row, which is highly

desirable in some applications and can be used to provide unnest-

ing capabilities. For instance, a process command could be used to

break an input search string into a series of words and return one

row for each of these words, possibly with some additional infor-

mation encoded in other columns. Subsequent commands can then

perform further analysis of individual words.

3.4.2 Reduce
REDUCE [<input> [PRESORT column [ASC|DESC] [, …]]]

ON grouping_column [, …]

USING <Reducer> [(args)]

[PRODUCE column [, …]]

[HAVING <predicate>]

The reduce command takes as input a rowset that has been

grouped on the grouping columns specified in the ON clause,

processes each group, and outputs zero, one or multiple rows per

group. Input groups are guaranteed to be complete, that is, contain

all rows of the group. The Reduce function is called once per

group.

Some reducers may require the rows within each group to be

sorted on specific columns. This can be achieved with the presort

clause. The execution plan generated by SCOPE ensures that the

input is sorted as requested, possibly by sorting the input explicit-

ly if not done before. It saves users from having to sort the input

inside the reducer. The produce and having clauses have the same

function as in the process command.

public class MultiSetDifference : Combiner

{

 public override IEnumerable<Row> Combine(RowSet left, RowSet right, Row outputRow, string[] args)

 {
 int rightcount = 0;

 Foreach (Row row in right.Rows) {

 rightcount++;
 }

 foreach (Row row in left.Rows) {

 rightcount--;

 if (rightcount < 0) {

 row.Copy(outputRow);

 yield return outputRow;
 }

 }
 }

 public override Schema Produce(string[] requestedColumns, string[] args,

 Schema leftSchema, string leftTable, Schema rightSchema, string rightTable)
 {
 return new Schema(requestedColumns);
 }
}

Figure 5: Example Implementation of a Custom Combiner (computes the difference of two multisets)

public class CountReducer : Reducer

{

 public override Schema Produce(string[] requestedColumns, string[] args, Schema upstreamSchema)

 { return new Schema(requestedColumns); }

 public override IEnumerable<Row> Reduce(RowSet input, Row outputRow, string[] args)

 {
 int count = 0;

 foreach (Row row in input.Rows) {

 if (count == 0)

 outputRow[0].Set(row[o].String); // copy over first column

 count++;
 }

 outputRow[1].Set(count.ToString()); // convert to string and return in second col

 yield return outputRow;
 }
}

Figure 4: Example Implementation of a Simple Count Reducer

Figure 4 shows an example reducer that simply counts the number

of rows. The reducer returns rows with a string value in the first

column and its count in the second column. One could implement

a more sophisticated reducer that sums up counts and returns the

percentage of occurrences of each distinct word in the group. The

reducer framework is flexible enough to handle such complex

aggregates.

3.4.3 Combine
COMBINE <input1> [AS <alias1>] [PRESORT …]

 WITH <input2> [AS <alias2>] [PRESORT …]

ON <equality_predicate>

USING <Combiner> [(args)]

PRODUCE column [, …]

[HAVING <expression>]

COMBINE is a binary operator that takes two input rowsets,

combines them in some way, and outputs a sequence of rows. The

two inputs must be grouped in the same way and the user-written

combiner receives matching groups as input. The combiner then

processes the rows within each matching group in some way to

produce output rows. Requiring that inputs be grouped and only

allowing rows from matching groups to be combined enables

partitioning and distributed processing of the inputs.

Figure 5 shows an implementation of a combiner MultiSetDiffe-

rence that computes the difference between two multisets (using

SQL semantics). Suppose we have two multisets S1 and S2 with

columns A, B, and C. To compute the difference between S1 and

S2, invoke the combiner as follows:

COMBINE S1 WITH S2

ON S1.A==S2.A AND S1.B==S2.B AND S1.C==S2.C

USING MultiSetDifference

PRODUCE A, B, C

3.5 Importing Scripts
As described earlier, SCOPE allows the output of a command to

be assigned a name. Named outputs can be referenced, possibly

multiple times, by other commands within the script. This is

equivalent to the concept of “virtual” views in SQL where a view

is a named SQL expression that can be referenced in the same

way as a table and a reference to a view is resolved by substituting

the reference with the view definition (similar to macro expan-

sion).

SCOPE introduces an IMPORT command to extend view functio-

nality across scripts.

IMPORT <script_file>

[PARAMS <par_name> = <value> [,…]]

The import command reads in the contents of the named script file

(at compile time). In the process, parameter references are re-

placed by the values provided. This is actually more powerful

than SQL‟s view mechanism because SQL views cannot be para-

meterized.

Example 4: Suppose the file MyView.script contains the follow-

ing script that extract query strings from a log file, computes the

frequency of each query, and retains those with a frequency great-

er than a specified limit. Parameters are identified by being en-

closed by “@@”. The keyword EXPORT identifies the result

returned by the script.

E = EXTRACT query

 FROM @@logfile@@

 USING LogExtractor ;

EXPORT

R = SELECT query, COUNT() AS count

 FROM E

 GROUP BY query

 HAVING count > @@mincount@@;

This script invokes the MyView script twice: once to extract data

from a query log for January and once for a February query log. It

then computes how the frequency of popular queries has changed

from January to February.

Q1 = IMPORT “MyView.script”

 PARAMS logfile=”Queries_Jan.log”,

 limit=1000 ;

Q2 = IMPORT “MyView.script”

 PARAMS logfile=”Queries_Feb.log”,

 limit=1000 ;

JQ = SELECT Q1.query, Q2.count-Q1.count AS diff,

 Q1.count AS jan_cnt,

 Q2.count AS feb_count,

 FROM Q1 LEFT OUTER JOIN Q2

 ON Q1.query == Q2.query

 ORDER BY diff DESC;

The innocent-looking import command is an important and distin-

guishing feature of SCOPE. It provides several important benefits:

it enables modularity and information hiding; it provides a me-

chanism for users to share reusable code; and it can be used to

restrict access to sensitive data by only allowing access through

provided scripts.

4. SCOPE Execution
In this section, we describe how a SCOPE script is compiled,

optimized, and executed and show interactions among different

components.

We use the QCount query from Section 1 as a running example-

the script is repeated below. The query first extracts the search

query string from each log record by using one of the standard

SCOPE extractors. It then counts the number of occurrences of

each query and returns frequently used keywords (occurs more

than 1000 times) in descending order on the count. The result is

finally output as a Cosmos file.

SELECT query, COUNT() AS count

FROM "search.log"

 USING LogExtractor

GROUP BY query

HAVING count > 1000

ORDER BY count DESC;

OUTPUT TO "qcount.result";

The SCOPE script for this query is quite simple. The script goes

through the SCOPE compiler and optimizer to generate a parallel

execution plan which is then executed on the cluster.

4.1 SCOPE Compilation
The SCOPE compiler parses the script, checks the syntax, and

resolves names. It tracks all column definitions and renaming. For

each command in the script, the compiler checks that all the col-

umns have been properly defined by the inputs. The result of the

compilation is an internal parse tree. SCOPE has an option to

translate the parsed tree directly to a physical execution plan using

default plans for each command.

A physical execution plan is, in essence, a specification of Cos-

mos job. The job describes a data flow DAG where each vertex is

a program and each edge represents a data channel. A vertex pro-

gram is a serial program composed from SCOPE runtime physical

operators, which may in turn call user-defined functions. All

operators within a vertex program are executed in a pipelined

fashion, much like the query execution in a traditional database

system.

The job manager constructs the specified graph and schedules the

execution. A vertex becomes runnable when its inputs are ready.

The execution environment keeps track of the state of vertices and

channels, schedules runnable vertices for execution, decides

where to run a vertex, sets up the resources needed to run a vertex,

and finally starts the vertex program.

The translation into an execution plan is performed by traversing

the parse tree bottom-up. For each operator, SCOPE has default

implementation rules. For example, implementation of a simple

filtering operation is a vertex program using SCOPE‟s built-in

physical operator “filter” provided with a function that imple-

ments the filtering predicate.

Following the translation, the SCOPE compiler combines adjacent

vertices with physical operators that can be easily pipelined into

(super) vertices. There are four relationships between any two

adjacent vertices: 1:1, 1:n, n:1, and n:m. One of the heuristics

used by SCOPE is to combine two vertices with 1:1 relationship.

For example, if a “filter” is followed by a “sort”, SCOPE com-

bines the two operators into a single (super) vertex and executes

“filter”+”sort” in a pipelined fashion.

4.2 SCOPE Optimization
The SCOPE compiler may invoke the optimizer to find a better

plan for complex queries. We give a high level overview of the

optimizer – further details will be reported in a separate paper.

The SCOPE optimizer is a transformation-based optimizer based

on the Cascades framework [7]. Conceptually, the optimizer gene-

rates all possible rewritings of a query expression and chooses the

one with the lowest estimated cost. Rewritings are generated by

applying local transformation rules on query subexpressions, pro-

ducing substitute expressions logically equivalent to the original

subexpression.

Many of the traditional optimization rules from database systems

are clearly applicable also in this new context, for example, re-

moving unnecessary columns, pushing down selection predicates,

and pre-aggregating when possible. However, the highly distri-

buted execution environment offers new opportunities and chal-

lenges, making it necessary to explicitly consider the effects of

large-scale parallelism during optimization. For example, choos-

ing the right partition scheme and deciding when to partition are

crucial for finding an optimal plan. It is also important to correctly

reason about partitioning, grouping, and sorting properties, and

their interaction, to avoid unnecessary computations.

4.3 Example Query Plan
We now show the query execution plan used by SCOPE for the

QCount query. The extents of the input file are distributed over

many machines. For this query, a good strategy is to split the

aggregation into multiple layers of partial (local) aggregation

followed by a full (global) aggregation.

The plan consists of eight stages, as shown in Figure 6.

1. Extract: The input file consists of multiple file extents, dis-

tributed across many machines in the cluster. Multiple ex-

tractors run in parallel, each one reading part of the file.

2. Partial aggregation: In this stage, partial aggregation is ap-

plied at the rack level. That is, data from extractors running

on machines within the same rack is pre-aggregated to re-

duce data volume. This exploits knowledge about network

topology of the cluster. Partial aggregation can be done either

using sorting or hashing and, in this case, it can be applied

multiple times, either on a single extent or on groups of ex-

tents.

3. Distribute: The result from the previous stage is partitioned

on the grouping column “query”. This brings all (partially

aggregated) rows with the same query string into the same

partition.

4. Full aggregation: Each partition can safely calculate the final

aggregation in parallel, again either by sorting or hashing.

5. Filter: The fully aggregated rows are then filtered in parallel

and any row with a count less than 1000 is discarded.

6. Sort: The remaining rows are sorted by count in parallel.

7. Merge: The sorted results from all partitions are merged

together on a single machine, producing the final result.

8. Output: The final result is output as a Cosmos file.

The execution plan is submitted to Cosmos execution environ-

ment which prepares all necessary resources and schedules its

execution. As mentioned earlier, the Job Manager monitors

progress of all executing vertices. Failing vertices are re-executed

a limited number of times and if there are too many failures, the

job is terminated.

4.4 Runtime Optimization
Accurate information is not always available at compile time.

Therefore, some decisions are better left to run time when addi-

tional information is available. We briefly describe some optimi-

zations applied at run time.

A large cluster typically has hierarchically structured network. For

example, each rack of machines may have its own dedicated

switch and the per-rack switches are then connected to a single

common switch. In this architecture, it is important to not over-

load the common switch and use the per-rack switches as much as

possible. In the Cosmos execution environment, the scheduler

Extract Extract

Partial

Agg

Distribute

Full Agg

Sort

Extract Extract

Partial

Agg

Distribute

Full Agg

Sort

Full Agg

Sort

Merge

Filter

Output

... ...

...

... ...

Filter Filter... ...

1

2

3

4

5

6

7

8

Stages

Search.log

qcount.result

Figure 6: Execution Plan for QCount Query

tries hard to schedule vertices to execute on the same machine as

their input data or at least within the same rack as the data. Mak-

ing such scheduling decisions at optimization time is difficult

because completion times for different vertices are hard to predict.

As mentioned earlier, partial aggregation in Stage 3 can be ap-

plied multiple times at different levels without changing the cor-

rectness of the program. Given that partial aggregation reduces the

input data size, it makes sense to aggregate the inputs within the

same rack before sending them out, thereby reducing the overall

network traffic between racks. The scheduler also has grouping

heuristics to ensure that each vertex has not more than a set num-

ber of inputs, or a set volume of input data, in order to avoid over-

loading the I/O system or the vertex.

5. EXPERIMENTAL EVALUATION
SCOPE is used for a wide variety of applications inside Micro-

soft, including complex relational queries and large-scale data

mining applications. SCOPE is highly extensible in that users can

easily create customized extractors, processors, reducers, and

combiners by extending corresponding built-in components. This

provides powerful extensions to the scripting language.

In this section, we show that some complex database OLAP que-

ries can be executed on a large using SCOPE. It illustrates flex-

ibility of the SCOPE language and some fairly complex execution

plans. We also run the experiments on clusters with different sizes

and demonstrate the scalability of the system.

5.1 Experimental Setup
All experiments were run on a small test cluster of 84 machines.

Each machine has two dual-core Xeon processors running at

2GHz, 8 GB of DRAM, and four 500GB SATA disks. All ma-

chines run Windows Server 2003 Enterprise X64 Edition SP1.

TPC-H is a well-known data warehouse benchmark. It consists of

a suite of business oriented ad-hoc queries. We generated three

TPC-H databases with scale factors 10 (10GB), 100 (100GB), and

1000 (1TB). The raw database files were stored as Cosmos files in

the cluster. Data is stored as text; each line contains a single row

with columns separated by the delimiter „|‟. We created custom

extractors in C# for different database files in order to extract

necessary columns.

5.2 TPC-H Queries
All of the 22 queries can be executed using SCOPE. For some

complex queries, SCOPE generates fairly sophisticated parallel

execution plans. Due to space limitation, we use Query 1 and 2 as

examples to illustrate the implementation details. We focus on the

flexibility of the SCOPE language and demonstrate complex but

efficient execution plans.

5.2.1 TPC-H Query 1
Query 1 reports the amount of business that was billed, shipped,

and returned. It provides multiple aggregated results over the line-

item table. We list the SCOPE script below.

// Extract lineitem

// (The local filter has been pushed into

// LineitemExtractor)

LINEITEM =

 EXTRACT l_quantity:double,

 l_extendedprice:double,

 l_discount:double,

 l_tax:double, l_returnflag,

 l_linestatus, l_shipdate

 FROM "filesystem://lineitem.tbl"

 USING LineitemExtractor;

// Main query

RESULT =

 SELECT l_returnflag, l_linestatus,

 SUM(l_quantity) AS sum_qty,

 SUM(l_extendedprice) AS sum_base_price,

 SUM(l_extendedprice*(1.0-l_discount)) AS

 sum_disc_price,

 SUM(l_extendedprice*(1.0-l_discount)*

 (1.0+l_tax)) AS sum_charge,

 AVG(l_quantity) AS avg_qty,

 AVG(l_extendedprice) AS avg_price,

 AVG(l_discount) AS avg_disc,

 COUNT(*) AS count_order

 FROM lineitem

 GROUP BY l_returnflag, l_linestatus

 ORDER BY l_returnflag, l_linestatus;

// output result

OUTPUT RESULT TO "tpchQ1.tbl";

The script looks very much like a SQL query except that both the

input and the output are Cosmos files. As described in Figure 2,

the function “LineitemExtractor” extracts from the input table file

all necessary columns and convert them to the desired type. For

better efficiency, the local filter on l_shipdate has been pushed

into the extractor.

The final execution plan is similar to the one for QCount query in

Section 4. The plan exploits both partial and full aggregation, and

applies partial aggregation as early as possible to reduce the data

size. All the machines in the cluster participate in extracting data

from the lineitem file. During execution, the intermediate result is

partitioned into many small partitions so that each machine is

busy working on some partitions. The final results are merged and

output as a Cosmos file.

5.2.2 TPC-H Query 2
The previous example showed a SCOPE script written as a tradi-

tional SQL block. SCOPE also accepts scripts written in a step-

wise fashion where each step performs one or a few small opera-

tions like filter, join, group-by, etc. We can implement TPC-H

Query 2 in such a way.

Query 2 finds which supplier should be selected to place an order

for a given part in a given region. It contains multi-way joins, an

aggregation, and a subquery. The script is listed below.

// Here are all the extracts that we need.

// (Local filters have been pushed into

// the extractors)

REGION =

 EXTRACT r_regionkey, r_name

 FROM "region.tbl"

 USING RegionExtractor;

NATION =

 EXTRACT n_nationkey, n_name, n_regionkey

 FROM "nation.tbl"

 USING NationExtractor;

SUPPLIER =

 EXTRACT s_suppkey,s_name, s_address,

 s_nationkey, s_phone, s_acctbal, s_commen

 FROM "supplier.tbl"

 USING SupplierExtractor;

PARTSUPP =

 EXTRACT ps_partkey, ps_suppkey, ps_supplycost

 FROM "partsupp.tbl"

 USING PartSuppExtractor;

PART =

 EXTRACT p_partkey, p_mfgr

 FROM “part.tbl"

 USING PartExtractor;

// Join region, nation, and, supplier

// (Retain only the key of supplier)

RNS_JOIN =

 SELECT s_suppkey, n_name

 FROM region, nation, supplier

 WHERE r_regionkey == n_regionkey

 AND n_nationkey == s_nationkey;

// Now join in part and partsupp

RNSPS_JOIN =

 SELECT p_partkey, ps_supplycost,

 ps_suppkey, p_mfgr, n_name

 FROM part, partsupp, rns_join

 WHERE p_partkey == ps_partkey

 AND s_suppkey == ps_suppkey;

// Finish subquery so we get the min costs

SUBQ =

 SELECT p_partkey AS subq_partkey,

 MIN(ps_supplycost) AS min_cost

 FROM rnsps_join

 GROUP BY p_partkey;

// Finish computation of main query

// (Join with subquery and join with supplier

// again to get the required output columns)

RESULT =

 SELECT s_acctbal, s_name, p_partkey,

 p_mfgr, s_address, s_phone, s_comment

 FROM rnsps_join AS lo, subq AS sq, supplier AS s

 WHERE lo.p_partkey == sq.subq_partkey

 AND lo.ps_supplycost == min_cost

 AND lo.ps_suppkey == s.s_suppkey

 ORDER BY acctbal DESC, n_name, s_name, partkey;

// output result

OUTPUT RESULT TO "tpchQ2.tbl";

For this complex query, the SCOPE implementation is quite sim-

ple, requiring only a few dozens of lines of code. The subquery of

the original SQL query is rewritten as an equi-join in the script.

We extract all necessary columns from five source table files,

using customized extractors (not shown, due to space limitation).

All local filters have been pushed into the corresponding extrac-

tors. The join result of the five tables, RNSPS_JOIN, is first used

to calculate the minimal supply cost per part, which is then joined

with the join result RNSPS_JOIN and supplier table to retrieve all

output columns.

The complete execution plan generated by SCOPE is fairly so-

phisticated. Instead of showing every detail, Figure 7 shows an

overview of the execution plan. Both the join result, shown as

RNSPS_JOIN in the figure and the result of the supplier extractor

are used twice.

The plan achieves maximum degree of parallelism by utilizing all

the machines to extract source table files and partitioning large

input data sets so that each machine is busy with computation.

We drill into the dashed part in Figure 7 and show the details of

the subplan in Figure 8. For presentation purposes, the plan shown

uses a degree of parallelism of three. The actual plan‟s degree of

parallelism depends on several factors including the number of

machines available, the amount of data processed, etc.

We work through the subplan by stages.

1. Join: The join predicate of this stage is s_suppkey ==

ps_suppkey. Before this stage, both inputs of the join have

been partitioned by s_suppkey and ps_suppkey, respectively.

Each join vertex takes two matching partitions and generates

the local join result.

2. Partial aggregation: In this stage, partial aggregation is ap-

plied to the local join results at the rack level.

3. Distribute: Each local aggregated result is partitioned on the

group-by column, p_partkey.

4. Full aggregation: Each partition can safely calculate the final

aggregation in parallel. This groups all (partially aggregated)

rows with the same p_partkey into the same partition.

5. Distribute: The fully aggregated result is partitioned by the

next join column, subq_partkey, in parallel.

6. Merge: Each vertex merges corresponding partitions in paral-

lel in order to prepare a join partition for one join input.

7. Distribute: In this stage, the same join result of RNSPS_JOIN

is partitioned by the next join column, p_partkey, in parallel.

8. Merge: Each vertex merges corresponding partitions in paral-

lel in order to prepare a join partition for the other join input.

9. Join: The matching partitions from both inputs are joined in

parallel. The join results are consumed by the following stag-

es, also in parallel.

Figure 7: Overall Execution Plan for TPC-H Query 2

Extract Extract Extract Extract

Join

Extract

Join

Join

Join

Agg

Join

Join

region.tbl nation.tbl supplier.tbl part.tbl partsupp.tbl

RNSPS_JOIN

SUBQ

RESULT

tpchQ2.tbl

Sort

5.3 Scalability
In this section, we show how query performance scales with clus-

ters with different sizes and databases with different scale factors,

respectively. We report performance trends rather than actual

elapsed times.

In the first experiment, we ran both Q1 and Q2 against the 1TB

TPC-H database. We changed the cluster size by limiting the

number of machines used for query execution. We use query

elapsed times of Q1 and Q2 on a cluster of 20 machines as base

lines, respectively, and show performance ratio (elapsed time /

base line) for different cluster configurations. As shown in Figure

9 which uses a log scale on the axis of performance ratio, query

performance for both queries scales linearly with cluster size.

In the second experiment, we ran both queries on the full cluster

but against databases of different sizes. We use the elapsed times

of Q1 and Q2 against the 10GB TPC-H database as the base lines.

In fact, when querying against the 10GB database, since the data

file is relatively small, not all the machines on the cluster are uti-

lized. Nevertheless, as shown in Figure 10, query performance for

both queries scales linearly with input size.

6. RELATED WORK
SCOPE is heavily influenced by SQL but its target applications

and execution environment differ from traditional database sys-

tems. SCOPE is designed for easy and efficient processing of

massive amounts of data stored in distributed, sequential files. It

provides efficient query processing functionality. The execution

Figure 10: Query Performance with Different Database

Sizes

Figure 9: Query Performance with Different Cluster Sizes

Join Join Join

...
...

...

Full Agg Full Agg Full Agg

Distribute Distribute Distribute

Distribute Distribute Distribute

Partial

Agg

Partial

Agg

Partial

Agg

Distribute Distribute Distribute

Merge Merge Merge

Merge Merge Merge

Join Join Join

...
...

...

SUBQ

RNSPS_JOIN

1

2

3

4

5

6

7

8

9

Stages

Figure 8: Sub Execution Plan for TPC-H Query 2

strategies used owe much to earlier work on query processing in

parallel and distributed database systems [9].

All companies operating internet-scale services have the need to

store and process massive data sets and have developed their own

system for this purpose. Google popularized the map-reduce pro-

gramming model. Based on what has been published in the open

literature, their software stack consists of Google File System [8]

and Bigtable [3] for storage, the MapReduce execution environ-

ment [5] with users writing MapReduce applications in C++ or

Sawzall [11]. A MapReduce application written in C++ takes

many more lines of code than the corresponding application ex-

pressed in SCOPE. For example, the word count application used

as an example in [5] requires about 70 lines of C++ code but only

five or six lines of SCOPE code.

Yahoo! also has a software stack designed for distributed

processing of massive data sets. Users write applications in a

language called Pig Latin [10] [1]. A Pig Latin program is com-

piled by the Pig system into a sequence of MapReduce operators

that are executed using Hadoop [1], an open-source implementa-

tion of MapReduce. Pig Latin is a dataflow language using a

nested data model. Each step in a program specifies a single, high-

level data transformation. A complex computation is expressed as

a series of such transformations. Yahoo! also has a more power-

ful Map-Reduce-Merge execution environment but it is apparently

not the execution environment used by the Pig system.

Both Google and Yahoo! use a MapReduce execution environ-

ment. MapReduce is very rigid, forcing every computation to be

structured as a sequence of map-reduce pairs. The Cosmos execu-

tion environment is significantly more flexible, handling execu-

tion of any computation that can be expressed as an acyclic dataf-

low graph.

7. CONCLUSION
In this paper, we present a new scripting language SCOPE for

web-scale data analysis on large clusters of hundreds or thousands

of machines. SCOPE has a strong resemblance to SQL – an inten-

tional design choice. The language is high-level and declarative so

that the SCOPE compiler and optimizer can optimize SCOPE

scripts and improve them over time. All the hardware and imple-

mentation details are transparent to users. SCOPE is also highly

extensible. Users can easily create customized extractors, proces-

sors, aggregators, and combiners by extending corresponding

built-in C# components. Such extensions allow users to efficiently

solve problems that are otherwise difficult to express in SQL. The

parallel execution plans generated by the SCOPE compiler and

optimizer fully utilize the cluster. Experiments confirm that query

performance scales linearly with cluster and data sizes.

8. Acknowledgements
We would like to thank the following people for their contribu-

tions to the SCOPE system: Robert Ragno and Mike Schultz for

their many contributions to an earlier prototype; Fritz Behr for

bravely suffering through early versions of SCOPE; Grace Zhang

for regression testing; Achint Srivastava for contributions to the

runtime; Daniel Dedu-Constantin for contributions to the design;

Andrew Kadatch, Sam McKelvie and the entire Cosmos team for

providing the reliable and available substrate on which SCOPE is

built; and Nat Ballou for facilitating the technology transfer from

Microsoft Research and building the SCOPE team.

9. REFERENCES
[1] Apache. Hadoop. http://lucene.apache.org/hadoop/, 2008.

[2] Apache. Pig. http://incubator.apache.org/pig/, 2008.

[3] Fay Chang et al, Bigtable: a distributed storage system for

structured data, OSDI 2006, 205-218.

[4] Chu, L., Tang, H., Yang, T., and Shen, K. 2003. Optimizing

data aggregation for cluster-based internet services. In Pro-

ceedings of the Ninth ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming, 2003.

[5] Jeffrey Dean, Sanjay Ghemawat: MapReduce: simplified

data processing on large clusters. OSDI 2004: 137-149.

[6] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Den-

nis Fetterly: Dryad: distributed data-parallel programs from

sequential building blocks. EuroSys 2007: 59-72.

[7] G. Graefe. The Cascades framework for query optimization.

IEEE Data Eng. Bull., 18(3): 1995.

[8] Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: The

Google file system. SOSP 2003: 29-43.

[9] Lu, Ooi, Tan, Query Processing in Parallel Relational Data-

base Systems, IEEE Computer Society Press, 1994.

[10] Christopher Olston, Benjamin Reed, Utkarsh Srivastava,

Ravi Kumar, Andrew Tomkins: Pig Latin: A Not-So-Foreign

Language for Data Processing, SIGMOD 2008 (to appear).

[11] Rob Pike, Sean Dorward, Robert Griesemer, Sean Quinlan:

Interpreting the data: Parallel analysis with Sawzall. Scientif-

ic Programming 13(4): 277-298 (2005)

[12] Hung-Chih Yang, Ali Dadsdan, Ruey-Lung Hsiao, D. Stott

Parker, Map-Reduce-Merge: simplified relational data

processing on large clusters, SIGMOD 2007, 1029-1040.

[13] Yahoo! Research, PNUTS - Platform for Nimble Universal

Table Storage, http://research.yahoo.com/node/212, 2008

