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ABSTRACT 

Companies providing cloud-scale services have an increasing 

need to store and analyze massive data sets such as search logs 

and click streams. For cost and performance reasons, processing is 

typically done on large clusters of shared-nothing commodity 

machines. It is imperative to develop a programming model that 

hides the complexity of the underlying system but provides flex-

ibility by allowing users to extend functionality to meet a variety 

of requirements. 

In this paper, we present a new declarative and extensible script-

ing language, SCOPE (Structured Computations Optimized for 

Parallel Execution), targeted for this type of massive data analy-

sis. The language is designed for ease of use with no explicit par-

allelism, while being amenable to efficient parallel execution on 

large clusters. SCOPE borrows several features from SQL. Data is 

modeled as sets of rows composed of typed columns. The select 

statement is retained with inner joins, outer joins, and aggregation 

allowed. Users can easily define their own functions and imple-

ment their own versions of operators: extractors (parsing and con-

structing rows from a file), processors (row-wise processing), 

reducers (group-wise processing), and combiners (combining 

rows from two inputs). SCOPE supports nesting of expressions 

but also allows a computation to be specified as a series of steps, 

in a manner often preferred by programmers. We also describe 

how scripts are compiled into efficient, parallel execution plans 

and executed on large clusters. 

1. INTRODUCTION 
Internet companies store and analyze massive data sets, such as 

search logs, web content collected by crawlers, and click streams 

collected from a variety of web services. Such analysis is becom-

ing increasingly valuable for business in a variety of ways, for 

example, to improve service quality and support novel features, to 

detect changes in patterns over time, and to detect fraudulent ac-

tivity. 

Due to the size of these data sets, traditional parallel database 

solutions can be prohibitively expensive. To be able to perform  

this type of web-scale analysis in a cost-effective manner, several 

companies have developed distributed data storage and  

processing systems on large clusters of shared-nothing commodity 

servers, including Google‟s File System [8] , Bigtable [3], Map-

Reduce [5], Hadoop [1], Yahoo!‟s Pig system [2], Ask.com‟s 

Neptune [4], and Microsoft‟s Dryad [6]. A typical cluster consists 

of hundreds or thousands of commodity machines connected via a 

high-bandwidth network. It is challenging to design a program-

ming model that enables users to easily write programs that can 

efficiently and effectively utilize all resources in such a cluster 

and achieve maximum degree of parallelism.  

The Map-Reduce programming model provides a good abstraction 

of group-by-aggregation operations over a cluster of machines. 

The programmer provides a map function that performs grouping 

and a reduce function that performs aggregation. The underlying 

run-time system achieves parallelism by partitioning the data and 

processing different partitions concurrently using multiple ma-

chines.   

However, this model has its own set of limitations. Users are 

forced to map their applications to the map-reduce model in order 

to achieve parallelism. For some applications this mapping is  

very unnatural. Users have to provide implementations for the 

map and reduce functions, even for simple operations like projec-

tion and selection. Such custom code is error-prone and hardly 

reusable. Moreover, for complex applications that require multiple 

stages of map-reduce, there are often many valid evaluation strat-

egies and execution orders. Having users implement (potentially 

multiple) map and reduce functions is equivalent to asking users 

specify physical execution plans directly in database systems. The 

user plans may be suboptimal and lead to performance degrada-

tion by orders of magnitude. 

In this paper, we present a new scripting language, SCOPE (Struc-

tured Computations Optimized for Parallel Execution), targeted 

for large-scale data analysis that is under development at Micro-

soft. Many users are familiar with relational data and SQL. 

SCOPE intentionally builds on this knowledge but with simplifi-

cations suited for the new execution environment. Users familiar 

with SQL require little or no training to use SCOPE. Like SQL, 

data is modeled as sets of rows composed of typed columns. 

Every rowset has a well-defined schema. The SCOPE runtime 

provides implementations of many standard physical operators, 

saving users from implementing similar functionality repetitively.  

SCOPE is being used daily for a variety of data analysis and data 

mining applications inside Microsoft. 

SCOPE is a declarative language. It allows users to focus on the 

data transformations required to solve the problem at hand and 

hides the complexity of the underlying platform and implementa-

tion details. The SCOPE compiler and optimizer are responsible 

for generating an efficient execution plan and the runtime for 

executing the plan with minimal overhead. 

 
 
Permission to copy without fee all or part of this material is granted provided 

that the copies are not made or distributed for direct commercial advantage, 

the VLDB copyright notice and the title of the publication and its date ap-

pear, and notice is given that copying is by permission of the Very Large 

Database Endowment. To copy otherwise, or to republish, to post on servers 
or to redistribute to lists, requires a fee and/or special permissions from the 

publisher, ACM. 

VLDB ’08, August 24-30, 2008, Auckland, New Zealand. 

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00. 



 

SCOPE is highly extensible. Users can easily define their own 

functions and implement their own versions of operators: extrac-

tors (parsing and constructing rows from a file), processors (row-

wise processing), reducers (group-wise processing), and combin-

ers (combining rows from two inputs). This flexibility greatly 

extends the scope of the language and allows users to solve prob-

lems that cannot be easily expressed in traditional SQL. 

SCOPE provides functionality similar to views in SQL. This fea-

ture greatly enhances modularity and code reusability. It can also 

be used to restrict access to sensitive data. 

SCOPE supports writing a program using traditional nested SQL 

expressions or as a series of simple data transformations. The 

latter style is often preferred by programmers who are used to 

thinking of a computation as a series of steps. We illustrate the 

usage of SCOPE by the following example. 

Example 1: A QCount query computes search query frequencies: 

how many times different query strings have occurred. There are 

several variants of QCount queries, for example, a QCount query 

may return only the top N most frequent queries or it may return 

queries that have occurred more than M times. Nevertheless, all 

QCount queries involve simple aggregation over a large data set, 

followed by some filtering conditions.  

In this example, we want to find from the search log the popular 

queries that have been requested at least 1000 times. Expressing 

this in SCOPE is very easy. 

SELECT query, COUNT(*) AS count 

FROM "search.log" USING LogExtractor 

GROUP BY query 

HAVING count > 1000 

ORDER BY count DESC; 

OUTPUT TO "qcount.result"; 

The select command is similar to SQL‟s select command except 

that it uses a built-in extractor, LogExtractor, which parses each 

log record and extracts the requested columns. By default, a 

command takes the output of the previous command as its input. 

In this case, the output command writes the result of the select to 

the file “qcount.result”. 

The same query can also be written in SCOPE as a step-by-step 

computation. 

e = EXTRACT query  

    FROM “search.log" 

    USING LogExtractor; 

s1 = SELECT query, COUNT(*) as count 

     FROM e  

     GROUP BY query; 

s2 = SELECT query, count 

     FROM s1  

     WHERE count > 1000; 

s3 = SELECT query, count 

     FROM s2  

     ORDER BY count DESC; 

OUTPUT s3 TO “qcount.result"; 

The script is also easy to understand. The extract command ex-

tracts all query string from the log file. The first select command 

counts the number of occurrences of each query string. The 

second select command retains only rows with a count greater 

than 1000. The third select command sorts the rows on count. 

Finally, the output command writes the result to the file 

“qcount.result”. 

 

In either case, users do not need to implement any operators or 

wonder how to efficiently execute the query on a large cluster. 

The SCOPE compiler and optimizer are responsible for translating 

a script into an efficient, parallel execution plan.  

 

The rest of the paper is organized as follows. We first give an 

brief overview of the software platform developed at Microsoft 

for storing and analyzing massive data sets in Section 2. We 

present the SCOPE scripting language in more detail in Section 3. 

In Section 4, we describe other SCOPE components and show 

how a SCOPE script is compiled, optimized, and executed. Expe-

rimental evaluation using TPC-H queries is provided in Section 5. 

We discuss related work in Section 6 and conclude in Section 7. 

2. PLATFORM OVERVIEW 
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Figure 1: Cosmos Software Layers 

Microsoft has developed a distributed computing platform, called 

Cosmos, for storing and analyzing massive data sets. Cosmos is 

designed to run on large clusters consisting of thousands of com-

modity servers. Disk storage is distributed with each server having 

one or more direct-attached disks.  

High-level design objectives for the Cosmos platform include: 

1. Availability: Cosmos is resilient to multiple hardware fail-

ures to avoid whole system outages. File data is replicated 

many times throughout the system and file meta-data is ma-

naged by a quorum group of 2f+1 servers so as to tolerate f 

failures.  

2. Reliability: Cosmos is architected to recognize transient 

hardware conditions to avoid corrupting the system. System 

components are check-summed end-to-end and apply me-

chanisms to crash faulty components. The on-disk data is pe-

riodically scrubbed to detect corrupt or bit rot data before it 

is used by the system. 

3. Scalability:  Cosmos is designed from the ground up to be a 

scalable system, capable of storing and processing petabytes 

of data.  Storage and compute capacity is easily increased by 

adding more servers to the cluster.   

4. Performance:  Cosmos runs on clusters comprised of thou-

sands of individual servers. Data is distributed among the 



 

servers. A job is broken down into small units of computa-

tion and distributed across a large number of CPUs and sto-

rage devices, significantly reducing job completion times.  

5. Cost:  Cosmos is cheaper to build, operate and expand, per 

gigabyte, than traditional approaches to the same problem.  It 

is far more cost-effective to utilize large numbers of low-cost 

servers to tackle these types of massive compute problems, 

as opposed to buying a smaller number of expensive large-

scale servers.   

Figure 1 shows the main components of the Cosmos platform.  

1. Cosmos storage: A distributed storage subsystem designed to 

reliably and efficiently store extremely large sequential files. 

2. Cosmos execution environment: An environment for deploy-

ing, executing, and debugging distributed applications. 

3. SCOPE: A high-level scripting language for writing data 

analysis jobs. The SCOPE compiler and optimizer translate 

scripts to efficient parallel execution plans.  

In this paper, we focus on the SCOPE and its components. We 

briefly describe other Cosmos components in this section. A de-

tailed description of the Cosmos platform is out of the scope of 

this paper. 

2.1 Cosmos Storage System 
The Cosmos Storage System is an append-only file system that 

reliably stores petabytes of data. The system is optimized for large 

sequential I/O. All writes are append-only and concurrent writers 

are serialized by the system. Data is distributed and replicated for 

fault tolerance and compressed to save storage and increase I/O 

throughput. 

A Cosmos Store provides a directory with a hierarchical names-

pace and stores sequential files of unlimited size. A file is physi-

cally composed of a sequence of extents. Extents are the unit of 

space allocation and are typically a few hundred megabytes in 

size. A unit of computation generally consumes a small number of 

collocated extents. Extents are replicated for reliability and also 

regularly scrubbed to protect against bit rot.  

The data within an extent consist of a sequence of append blocks. 

The block boundaries are defined by application appends. Append 

blocks are typically a few megabytes in size and contain a collec-

tion of application-defined records. Append blocks are stored in 

compressed form with compression and decompression done 

transparently at the client.  

2.2 Cosmos Execution Environment 
The lowest level primitives of the Cosmos execution environment 

provide only the ability to run arbitrary executable code on a serv-

er. Clients upload application code and resources onto the system 

via a Cosmos execution protocol. A recipient server assigns the 

task a priority and executes it at an appropriate time. It is difficult, 

tedious, error prone, and time consuming to program at this lowest 

level to build an efficient and fault tolerant application.  

In Cosmos, applications are programmed against the execution 

engine that provides a higher-level programming interface and a 

runtime system that automatically handles the details of optimiza-

tion, fault tolerance, data partitioning, resource management, and 

parallelism.  

An application is modeled as a dataflow graph: a directed acyclic 

graph (DAG) with vertices representing processes and edges 

representing data flows. The runtime component of the execution 

engine is called the Job Manager. The JM is the central and coor-

dinating process for all processing vertices within an application. 

The primary function of the JM is to construct the runtime DAG 

from the compile time representation of a DAG and execute over 

it. The JM schedules a DAG vertex onto the system processing 

nodes when all the inputs are ready, monitors progress, and, on 

failure, re-executes part of the DAG. 

We refer readers to the Dryad paper [6] for details of an execution 

engine that is built over the basic primitives of Cosmos. Dryad 

implements a job manager and a graph building language for 

composing vertices of computation and edges of communication 

channels between the vertices.  

3. SCOPE Scripting Language 
The SCOPE scripting language resembles SQL but with C# ex-

pressions. This design choice offers several advantages. Its re-

semblance to SQL reduces the learning curve for users and eases 

porting of existing SQL scripts into SCOPE. SCOPE expressions 

can use C# libraries. Custom C# classes can compute functions of 

scalar values, or manipulate whole rowsets.  

A SCOPE script consists of a sequence of commands. Except for 

a few auxiliary commands, commands are data transformation 

operators that take one or more rowsets as input, perform some 

operation on the data, and output a rowset. Every rowset has a 

well-defined schema that all its rows must adhere to.  

By default, a command takes the result rowset of the previous 

command as input. As shown in Example 1, the output command 

in the first SCOPE script takes the result of the previous select 

command as its input. SCOPE commands can also take named 

inputs and users can name the output of a command using as-

signment. The output of a command can be used by subsequent 

commands one or more times. The second script in Example 1 

shows an example of named inputs where e, s1, s2, s3 represent 

the result of the corresponding command. Named inputs/outputs 

enable users to write scripts in multiple (small) steps, a style pre-

ferred by some programmers. 

SCOPE supports a variety of data types, including int, long, 

double, float, DateTime, string, bool and their nullable counter-

parts. SCOPE uses C# semantics for nulls, which differs from 

SQL null semantics. Null compares equal to null. Null compared 

to a non-null value is always false. Null sorts high. The aggregates 

ignore nulls in SCOPE. 

A script writer can view operators as being entirely serial; map-

ping the script to an efficient parallel execution plan is handled 

completely by the SCOPE compiler and optimizer. 

3.1 Input and Output 
As described earlier, Cosmos provides distributed storage for 

massive data sets, such as site usage and click streams. While 

SCOPE is mostly used to analyze data stored in Cosmos files, any 

type of data store can be used as a data source or data sink.  

Input data for a SCOPE script is obtained by means of built-in or 

user-written extractors. SCOPE provides many standard extractors 

such as a generic extractor for text files and more specific ones for 

frequently used log files. However, input data does not have to 

originate from files; a user could, for example, write an extractor 

that pulls data from a database system. Similarly, SCOPE outputs 

data by means of built-in or user-written outputters, regardless of 

the type of data sink.  



 

SCOPE provides two customizable commands, EXTRACT and 

OUTPUT, for users to easily read in data from a data source and 

write out data to a data sink.  

EXTRACT column[:<type>] [, …]  

FROM < input_stream(s) > 

USING <Extractor> [(args)] 

[HAVING <predicate>] 

 

The extract command extracts data from some data source, usual-

ly a Cosmos file or a regular file, and outputs a sequence of rows 

with the schema specified in the extract clause. Parsing the raw 

input data and constructing output rows is most often done using 

one of the standard extractors provided by SCOPE. The optional 

having clause can be used to quickly filter the output; rows not 

satisfying the predicate are immediately discarded.  

 

Users can provide custom extractors by extending the C# class 

“Extractor”. Figure 2 shows an example implementation of a cus-

tom extractor that extracts some columns from the lineitem file. 

The “Extract” function is an iterator over output rows, that is, a 

call returns the next output row. (The C# statement yield re-

turn outputRow returns the current row and the next call re-

sumes execution from there, not from the beginning of the func-

tion.) Users can also provides custom schema information by 

overwriting the function “Produce”, which is called at compile 

time. In this example, we assumes that records in the lineitem file 

correspond to rows and columns are separated by „|‟. It extracts 

the columns indicated in “requestCol” from records that have a 

ship date later than „1998-10-01‟. 
 

OUTPUT [<input>   

   [PRESORT column [ASC | DESC] [, …]]] 

TO <output_stream> 

[USING <Outputter> [(args)]] 

 

Similarly, the output command is used to write data to a Cosmos 

file, a regular file, or any other data sink. This is the only way that 

data can exit the system. Formatting a row for output is done by 

calling the specified outputter, which can be one supplied by the 

system or by the user through extending the C# class “Outputter”. 

If no outputter is specified a default text outputter is used. The 

optional presort clause specifies that the input stream is to be 

sorted before rows are formatted and output.  

3.2 Select and Join 
SCOPE includes a select command that is patterned on SQL‟s 

select statement. 

SELECT [DISTINCT] [TOP count]  

select_expression [AS <name>] [, …] 

FROM { <input stream(s)> USING <Extractor> | 

{<input> [<joined input> […]]} [, …] 

     } 

[WHERE  <predicate>] 

[GROUP BY <grouping_columns> [, …] ] 

[HAVING <predicate>] 

[ORDER BY <select_list_item> [ASC | DESC] [, …]] 

 

joined input: 

  <join_type> JOIN <input> [ON <equijoin>] 

join_type: 

  [INNER | {LEFT | RIGHT | FULL} OUTER] 

 

Nesting of commands in the from clause is allowed but subqueries 

are not allowed. The select command can join multiple inputs 

using inner or outer joins. Join order selection is currently heuris-

tic, preferring equijoins and then joins with other predicates. Pre-

dicates are pushed down before joins when possible.   

Ten different aggregation functions are currently supported: 

COUNT, COUNTIF, MIN, MAX, SUM, AVG, STDEV, VAR, 

FIRST, and LAST. COUNTIF takes a predicate and counts only 

public class LineitemExtractor : Extractor 

{ 
    enum Cols{l_orderkey=0, l_partkey, l_suppkey, l_linenumber, l_quantity, 

              l_extendedprice, l_discount, l_tax, l_returnflag, l_linestatus, 

              l_shipdate, l_commitdate, l_receiptdate, l_shipinstruct, l_shipmode, l_comment}; 

 

    public override Schema Produce(string[] requestedColumns, string[] args) 

    { return new Schema(requestedColumns); } 

 

    public override IEnumerable<Row> Extract(StreamReader reader, Row outputRow, string[] args) 

    {   string line; 

        int[] requestCol = new int[]{(int)Cols.l_quantity, (int)Cols.l_extendedprice,  

                                   (int)Cols.l_discount, (int)Cols.l_tax,(int)Cols.l_returnflag, 

                                   (int)Cols.l_linestatus, (int)Cols.l_shipdate};        

        while ((line = reader.ReadLine()) != null) { 

           string[] tokens = line.Split('|'); 

           if (tokens[(int)Cols.l_shipdate].Substring(0,10) > "1998-10-01") // filter on ship date 

              continue; 

           for (int i=0; i < requestCol.Length; i++) { 

              if (requestCol [i] <= (int)Cols.l_tax) 

                  outputRow[i].Set(double.Parse(tokens[requestCol[i]])); 

              else 

                  outputRow[i].Set(tokens[requestCol[i]]); 

           } 

           yield return outputRow; 
        } 

    } 

} 

Figure 2: Example Implementation of a Custom Extractor 



 

the rows that satisfy the predicate. FIRST (LAST) returns the first 

(last) row in the group. FIRST and LAST are nondeterministic if 

the rows within a group are not sorted. 

Disallowing subqueries does not reduce the expressive power of 

the language because outer join is supported. Any subquery can 

be handled by first computing the result of the main query block 

and of the subquery block, then outer-joining the subquery result 

with the main query result (using the predicates correlating the 

main query to the subquery as join predicates), and finally filter-

ing the result using the predicate referencing the subquery.  

Example 2: We rewrite the following SQL query so the subquery 

is eliminated. The correlation predicate is the equality predicate 

Sc = Rc in the subquery. 

SELECT Ra, Rb 

FROM R 

WHERE Rb < 100 

  AND (Ra > 5 OR EXISTS(SELECT * FROM S 

                         WHERE Sa < 20  

                           AND Sc = Rc)) 

Here is an equivalent script in SCOPE. 

SQ = SELECT DISTINCT Sc FROM S WHERE Sa < 20; 

M1 = SELECT Ra, Rb, Rc FROM R WHERE Rb < 100; 

M2 = SELECT Ra, Rb, Rc, Sc  

     FROM M1 LEFT OUTER JOIN SQ ON Rc == Sc; 

Q  = SELECT Ra, Rb FROM M2 

     WHERE Ra > 5 OR Rc != Sc;  

The first select (SQ) finds the S rows that satisfy the non-

correlation predicates, project them onto the S columns used in 

the correlation predicate (Sc), and eliminates duplicates. The 

second select (M1) begins processing of the main query by apply-

ing predicates that do not involve the subquery. The third select 

(M2) outer-joins the previous result with the subquery result using 

the correlation predicate. Outer join is used to guarantee that 

every row from the main query is retained in the output. M1 rows 

that do not join with any rows from SQ are null-extended on Sc. 

The fourth select (Q) computes the final result by applying the 

predicate referencing the subquery. Note that the predicate Rc != 

Sc is satisfied only for rows that are null-extended on Sc. 

3.3 Expressions and Functions 
Scalar expressions and predicates in SCOPE are translated into C# 

expressions and predicates. This means that all functions and op-

erators available in C# are available in SCOPE. SCOPE also 

makes it easy for users to write their own functions. The definition 

of a user-defined function can be included right in the script file.  

Example 3: The following script illustrates the use of C# string 

functions and shows how to write a user-defined function. Col-

umns A, B and C are all of type string and, consequently, any of 

the C# string functions can be used. The expression A+C denotes 

string concatenation because both operands are strings. The C# 

function “Trim” strips white space from the beginning and the end 

of a string. The user-defined function “StringOccurs” counts the 

number of occurrences of a given pattern string in an input string. 

The function is written in C# and included in the script file in a 

section delimited by #CS and #ENDCS. 

R1 = SELECT A+C AS ac, B.Trim() AS B1 

     FROM R 

     WHERE StringOccurs(C, “xyz”) > 2 

 

#CS 

public static  

int StringOccurs(string str, string ptrn) 

{ 

   int cnt=0; int pos=-1; 

   while (pos+1 < str.Length) { 

     pos = str.IndexOf(ptrn, pos+1) ; 

     if (pos < 0) break; 

     cnt++; 

   } 

   return cnt;  

} 

#ENDCS 

3.4 User-Defined Operators 
For complex data mining and analysis applications, it may some-

times be complicated or impossible to express a desired operation 

with SQL-like commands alone. Examples include complex data 

manipulation, customized aggregates, etc.  

SCOPE provides three highly extensible commands that manipu-

late rowsets: PROCESS, REDUCE and COMBINE. Users can 

write customized operations by extending built-in C# components. 

The code can also be easily reused in other SCOPE scripts.  

The extensible commands provides the same functionality as the 

map-reduce model described in [5] and the operations map, re-

duce, and merge described in [12]. These extensible commands 

Figure 3: Example Implementation of a Custom Processor 

public class TrimProcessor : Processor 

{ 

   // This method is called at compile time to get column names and types of the output rows   

   public override Schema Produce(string[] requestedColumns, string[] args, Schema inputSchema) 

   { return new Schema(requestedColumns);  } 

   // This function trims all string valued columns and leaves others unchanged. 

   public override IEnumerable<Row> Process(RowSet input, Row outRow, string[] args) 

   { 

     foreach (Row row in input.Rows) { 

        row.Copy(outRow); 

        for (int i=0; i < row.Count; i++) { 

          if(outRow.Schema[i].Type == ColumnDataType.String){ 

             outRow[i].Set(outRow[i].String.Trim()); 

          } 

        } 

        yield return outRow; 
     } 

   } 

} 

 



 

complement SELECT, which offers easy declarative filtering, 

joining, arithmetic, and aggregation. We now describe the three 

commands and illustrate their usage. 

3.4.1 Process  
PROCESS [<input>] 

USING <Processor> [ (args) ] 

[PRODUCE column [, …]] 

[HAVING <predicate> ] 

The process command takes a rowset as input, processes each row 

in turn, and outputs a sequence of rows. The schema of the output 

rowset is specified in the produce clause. The having clause is a 

convenient shorthand – it can be used to post-filter the output 

rows without the need for a separate select command. 

The actual work of a process command is done by a user-written 

processor. The processor receives one input row at a time, per-

forms some computation on the row, and outputs zero, one, or 

multiple rows. Figure 3 shows a simple example processor which 

trims all string valued columns and leaves others unchanged. 

The process command is a very flexible command that enables 

users to implement processing that is difficult or impossible to 

express in SQL. An interesting feature is that the process com-

mand can return multiple rows per input row, which is highly 

desirable in some applications and can be used to provide unnest-

ing capabilities. For instance, a process command could be used to 

break an input search string into a series of words and return one 

row for each of these words, possibly with some additional infor-

mation encoded in other columns. Subsequent commands can then 

perform further analysis of individual words. 

3.4.2 Reduce 
REDUCE [<input> [PRESORT column [ASC|DESC] [, …]]] 

ON grouping_column [, …]  

USING <Reducer>  [ (args) ] 

[PRODUCE column [, …]] 

[HAVING <predicate> ] 

The reduce command takes as input a rowset that has been 

grouped on the grouping columns specified in the ON clause, 

processes each group, and outputs zero, one or multiple rows per 

group. Input groups are guaranteed to be complete, that is, contain 

all rows of the group. The Reduce function is called once per 

group. 

Some reducers may require the rows within each group to be 

sorted on specific columns. This can be achieved with the presort 

clause. The execution plan generated by SCOPE ensures that the 

input is sorted as requested, possibly by sorting the input explicit-

ly if not done before. It saves users from having to sort the input 

inside the reducer. The produce and having clauses have the same 

function as in the process command.  

public class MultiSetDifference : Combiner 

{ 

   public override IEnumerable<Row> Combine(RowSet left, RowSet right, Row outputRow, string[] args) 

   { 
      int rightcount = 0; 

      Foreach (Row row in right.Rows) { 

         rightcount++; 
      } 

      foreach (Row row in left.Rows) { 

         rightcount--; 

         if (rightcount < 0) { 

           row.Copy(outputRow); 

           yield return outputRow; 
         } 

      } 
   } 

   public override Schema Produce(string[] requestedColumns, string[] args, 

  Schema leftSchema,  string leftTable, Schema rightSchema, string rightTable) 
   { 
      return new Schema(requestedColumns); 
   } 
} 

 

Figure 5: Example Implementation of a Custom Combiner (computes the difference of two multisets) 

public class CountReducer : Reducer 

{ 

   public override Schema Produce(string[] requestedColumns, string[] args, Schema upstreamSchema) 

   { return new Schema(requestedColumns); } 

 

   public override IEnumerable<Row> Reduce(RowSet input, Row outputRow, string[] args) 

   { 
      int count = 0;  

      foreach (Row row in input.Rows) { 

        if (count == 0) 

           outputRow[0].Set(row[o].String); // copy over first column 

        count++; 
      } 

      outputRow[1].Set(count.ToString());  // convert to string and return in second col 

      yield return outputRow; 
   } 
} 

Figure 4: Example Implementation of a Simple Count Reducer 



 

Figure 4 shows an example reducer that simply counts the number 

of rows. The reducer returns rows with a string value in the first 

column and its count in the second column. One could implement 

a more sophisticated reducer that sums up counts and returns the 

percentage of occurrences of each distinct word in the group. The 

reducer framework is flexible enough to handle such complex 

aggregates. 

3.4.3 Combine 
COMBINE <input1> [AS <alias1>] [PRESORT …] 

   WITH <input2> [AS <alias2>] [PRESORT …] 

ON <equality_predicate>  

USING <Combiner>  [ (args) ] 

PRODUCE column [, …] 

[HAVING <expression> ] 

COMBINE is a binary operator that takes two input rowsets, 

combines them in some way, and outputs a sequence of rows. The 

two inputs must be grouped in the same way and the user-written 

combiner receives matching groups as input. The combiner then 

processes the rows within each matching group in some way to 

produce output rows. Requiring that inputs be grouped and only 

allowing rows from matching groups to be combined enables 

partitioning and distributed processing of the inputs. 

Figure 5 shows an implementation of a combiner MultiSetDiffe-

rence that computes the difference between two multisets (using 

SQL semantics). Suppose we have two multisets S1 and S2 with 

columns A, B, and C. To compute the difference between S1 and 

S2, invoke the combiner as follows: 

COMBINE S1 WITH S2 

ON S1.A==S2.A AND S1.B==S2.B AND S1.C==S2.C  

USING MultiSetDifference 

PRODUCE A, B, C 

3.5 Importing Scripts 
As described earlier, SCOPE allows the output of a command to 

be assigned a name. Named outputs can be referenced, possibly 

multiple times, by other commands within the script. This is 

equivalent to the concept of “virtual” views in SQL where a view 

is a named SQL expression that can be referenced in the same 

way as a table and a reference to a view is resolved by substituting 

the reference with the view definition (similar to macro expan-

sion). 

SCOPE introduces an IMPORT command to extend view functio-

nality across scripts. 

IMPORT <script_file>   

[PARAMS <par_name> = <value> [,…]] 

The import command reads in the contents of the named script file 

(at compile time). In the process, parameter references are re-

placed by the values provided. This is actually more powerful 

than SQL‟s view mechanism because SQL views cannot be para-

meterized. 

Example 4: Suppose the file MyView.script contains the follow-

ing script that extract query strings from a log file, computes the 

frequency of each query, and retains those with a frequency great-

er than a specified limit. Parameters are identified by being en-

closed by “@@”. The keyword EXPORT identifies the result 

returned by the script. 

E = EXTRACT query 

    FROM @@logfile@@ 

    USING LogExtractor ; 

EXPORT 

R = SELECT query, COUNT() AS count 

    FROM E 

    GROUP BY query  

    HAVING count > @@mincount@@;  

This script invokes the MyView script twice: once to extract data 

from a query log for January and once for a February query log. It 

then computes how the frequency of popular queries has changed 

from January to February. 

Q1 = IMPORT “MyView.script” 

     PARAMS logfile=”Queries_Jan.log”, 

            limit=1000 ; 

Q2 = IMPORT “MyView.script” 

     PARAMS logfile=”Queries_Feb.log”, 

             limit=1000 ; 

JQ = SELECT Q1.query, Q2.count-Q1.count AS diff, 

            Q1.count AS jan_cnt, 

            Q2.count AS feb_count, 

     FROM Q1 LEFT OUTER JOIN Q2 

          ON Q1.query == Q2.query  

     ORDER BY diff DESC; 

The innocent-looking import command is an important and distin-

guishing feature of SCOPE. It provides several important benefits: 

it enables modularity and information hiding; it provides a me-

chanism for users to share reusable code; and it can be used to 

restrict access to sensitive data by only allowing access through 

provided scripts. 

4. SCOPE Execution 
In this section, we describe how a SCOPE script is compiled, 

optimized, and executed and show interactions among different 

components.  

We use the QCount query from Section 1 as a running example- 

the script is repeated below. The query first extracts the search 

query string from each log record by using one of the standard 

SCOPE extractors. It then counts the number of occurrences of 

each query and returns frequently used keywords (occurs more 

than 1000 times) in descending order on the count. The result is 

finally output as a Cosmos file. 

SELECT query, COUNT() AS count 

FROM "search.log"  

      USING LogExtractor 

GROUP BY query 

HAVING count > 1000 

ORDER BY count DESC; 

OUTPUT TO "qcount.result"; 

The SCOPE script for this query is quite simple. The script goes 

through the SCOPE compiler and optimizer to generate a parallel 

execution plan which is then executed on the cluster. 

4.1 SCOPE Compilation 
The SCOPE compiler parses the script, checks the syntax, and 

resolves names. It tracks all column definitions and renaming. For 

each command in the script, the compiler checks that all the col-

umns have been properly defined by the inputs. The result of the 

compilation is an internal parse tree. SCOPE has an option to 

translate the parsed tree directly to a physical execution plan using 

default plans for each command.  

A physical execution plan is, in essence, a specification of Cos-

mos job. The job describes a data flow DAG where each vertex is 

a program and each edge represents a data channel. A vertex pro-

gram is a serial program composed from SCOPE runtime physical 



 

operators, which may in turn call user-defined functions.  All 

operators within a vertex program are executed in a pipelined 

fashion, much like the query execution in a traditional database 

system. 

The job manager constructs the specified graph and schedules the 

execution. A vertex becomes runnable when its inputs are ready. 

The execution environment keeps track of the state of vertices and 

channels, schedules runnable vertices for execution, decides 

where to run a vertex, sets up the resources needed to run a vertex, 

and finally starts the vertex program.   

The translation into an execution plan is performed by traversing 

the parse tree bottom-up. For each operator, SCOPE has default 

implementation rules. For example, implementation of a simple 

filtering operation is a vertex program using SCOPE‟s built-in 

physical operator “filter” provided with a function that imple-

ments the filtering predicate.  

Following the translation, the SCOPE compiler combines adjacent 

vertices with physical operators that can be easily pipelined into 

(super) vertices. There are four relationships between any two 

adjacent vertices: 1:1, 1:n, n:1, and n:m. One of the heuristics 

used by SCOPE is to combine two vertices with 1:1 relationship. 

For example, if a “filter” is followed by a “sort”, SCOPE com-

bines the two operators into a single (super) vertex and executes 

“filter”+”sort” in a pipelined fashion. 

4.2 SCOPE Optimization 
The SCOPE compiler may invoke the optimizer to find a better 

plan for complex queries. We give a high level overview of the 

optimizer – further details will be reported in a separate paper.  

The SCOPE optimizer is a transformation-based optimizer based 

on the Cascades framework [7]. Conceptually, the optimizer gene-

rates all possible rewritings of a query expression and chooses the 

one with the lowest estimated cost. Rewritings are generated by 

applying local transformation rules on query subexpressions, pro-

ducing substitute expressions logically equivalent to the original 

subexpression.  

Many of the traditional optimization rules from database systems 

are clearly applicable also in this new context, for example, re-

moving unnecessary columns, pushing down selection predicates, 

and pre-aggregating when possible. However, the highly distri-

buted execution environment offers new opportunities and chal-

lenges, making it necessary to explicitly consider the effects of 

large-scale parallelism during optimization. For example, choos-

ing the right partition scheme and deciding when to partition are 

crucial for finding an optimal plan. It is also important to correctly 

reason about partitioning, grouping, and sorting properties, and 

their interaction, to avoid unnecessary computations. 

4.3 Example Query Plan 
We now show the query execution plan used by SCOPE for the 

QCount query. The extents of the input file are distributed over 

many machines.  For this query, a good strategy is to split the 

aggregation into multiple layers of partial (local) aggregation 

followed by a full (global) aggregation.  

The plan consists of eight stages, as shown in Figure 6. 

1. Extract: The input file consists of multiple file extents, dis-

tributed across many machines in the cluster. Multiple ex-

tractors run in parallel, each one reading part of the file. 

2. Partial aggregation: In this stage, partial aggregation is ap-

plied at the rack level. That is, data from extractors running 

on machines within the same rack is pre-aggregated to re-

duce data volume. This exploits knowledge about network 

topology of the cluster. Partial aggregation can be done either 

using sorting or hashing and, in this case, it can be applied 

multiple times, either on a single extent or on groups of ex-

tents. 

3. Distribute: The result from the previous stage is partitioned 

on the grouping column “query”. This brings all (partially 

aggregated) rows with the same query string into the same 

partition.   

4. Full aggregation: Each partition can safely calculate the final 

aggregation in parallel, again either by sorting or hashing. 

5. Filter: The fully aggregated rows are then filtered in parallel 

and any row with a count less than 1000 is discarded. 

6. Sort: The remaining rows are sorted by count in parallel. 

7. Merge: The sorted results from all partitions are merged 

together on a single machine, producing the final result. 

8. Output: The final result is output as a Cosmos file. 

 

The execution plan is submitted to Cosmos execution environ-

ment which prepares all necessary resources and schedules its 

execution. As mentioned earlier, the Job Manager monitors 

progress of all executing vertices. Failing vertices are re-executed 

a limited number of times and if there are too many failures, the 

job is terminated. 

4.4 Runtime Optimization 
Accurate information is not always available at compile time. 

Therefore, some decisions are better left to run time when addi-

tional information is available. We briefly describe some optimi-

zations applied at run time. 

A large cluster typically has hierarchically structured network. For 

example, each rack of machines may have its own dedicated 

switch and the per-rack switches are then connected to a single 

common switch. In this architecture, it is important to not over-

load the common switch and use the per-rack switches as much as 

possible. In the Cosmos execution environment, the scheduler 
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Figure 6: Execution Plan for QCount Query 



 

tries hard to schedule vertices to execute on the same machine as 

their input data or at least within the same rack as the data. Mak-

ing such scheduling decisions at optimization time is difficult 

because completion times for different vertices are hard to predict. 

As mentioned earlier, partial aggregation in Stage 3 can be ap-

plied multiple times at different levels without changing the cor-

rectness of the program. Given that partial aggregation reduces the 

input data size, it makes sense to aggregate the inputs within the 

same rack before sending them out, thereby reducing the overall 

network traffic between racks. The scheduler also has grouping 

heuristics to ensure that each vertex has not more than a set num-

ber of inputs, or a set volume of input data, in order to avoid over-

loading the I/O system or the vertex. 

5. EXPERIMENTAL EVALUATION 
SCOPE is used for a wide variety of applications inside Micro-

soft, including complex relational queries and large-scale data 

mining applications. SCOPE is highly extensible in that users can 

easily create customized extractors, processors, reducers, and 

combiners by extending corresponding built-in components. This 

provides powerful extensions to the scripting language.  

In this section, we show that some complex database OLAP que-

ries can be executed on a large using SCOPE. It illustrates flex-

ibility of the SCOPE language and some fairly complex execution 

plans. We also run the experiments on clusters with different sizes 

and demonstrate the scalability of the system. 

5.1 Experimental Setup 
All experiments were run on a small test cluster of 84 machines. 

Each machine has two dual-core Xeon processors running at 

2GHz, 8 GB of DRAM, and four 500GB SATA disks. All ma-

chines run Windows Server 2003 Enterprise X64 Edition SP1. 

TPC-H is a well-known data warehouse benchmark. It consists of 

a suite of business oriented ad-hoc queries. We generated three 

TPC-H databases with scale factors 10 (10GB), 100 (100GB), and 

1000 (1TB). The raw database files were stored as Cosmos files in 

the cluster. Data is stored as text; each line contains a single row 

with columns separated by the delimiter „|‟. We created custom 

extractors in C# for different database files in order to extract 

necessary columns.  

5.2 TPC-H Queries 
All of the 22 queries can be executed using SCOPE. For some 

complex queries, SCOPE generates fairly sophisticated parallel 

execution plans. Due to space limitation, we use Query 1 and 2 as 

examples to illustrate the implementation details. We focus on the 

flexibility of the SCOPE language and demonstrate complex but 

efficient execution plans. 

5.2.1 TPC-H Query 1 
Query 1 reports the amount of business that was billed, shipped, 

and returned. It provides multiple aggregated results over the line-

item table. We list the SCOPE script below. 

// Extract lineitem 

//   (The local filter has been pushed into 

//    LineitemExtractor) 

LINEITEM =  

  EXTRACT l_quantity:double, 

          l_extendedprice:double, 

          l_discount:double,  

          l_tax:double, l_returnflag, 

          l_linestatus, l_shipdate 

  FROM "filesystem://lineitem.tbl" 

  USING LineitemExtractor; 

 

// Main query 

RESULT =  

  SELECT l_returnflag, l_linestatus,  

    SUM(l_quantity) AS sum_qty,  

    SUM(l_extendedprice) AS sum_base_price, 

    SUM(l_extendedprice*(1.0-l_discount)) AS 

       sum_disc_price, 

    SUM(l_extendedprice*(1.0-l_discount)* 

       (1.0+l_tax)) AS sum_charge, 

    AVG(l_quantity) AS avg_qty, 

    AVG(l_extendedprice) AS avg_price, 

    AVG(l_discount) AS avg_disc, 

    COUNT(*) AS count_order 

  FROM lineitem 

  GROUP BY l_returnflag, l_linestatus 

  ORDER BY l_returnflag, l_linestatus;       

 

// output result 

OUTPUT RESULT TO "tpchQ1.tbl"; 

The script looks very much like a SQL query except that both the 

input and the output are Cosmos files. As described in Figure 2, 

the function “LineitemExtractor” extracts from the input table file 

all necessary columns and convert them to the desired type. For 

better efficiency, the local filter on l_shipdate has been pushed 

into the extractor. 

The final execution plan is similar to the one for QCount query in 

Section 4. The plan exploits both partial and full aggregation, and 

applies partial aggregation as early as possible to reduce the data 

size. All the machines in the cluster participate in extracting data 

from the lineitem file. During execution, the intermediate result is 

partitioned into many small partitions so that each machine is 

busy working on some partitions. The final results are merged and 

output as a Cosmos file. 

5.2.2 TPC-H Query 2 
The previous example showed a SCOPE script written as a tradi-

tional SQL block. SCOPE also accepts scripts written in a step-

wise fashion where each step performs one or a few small opera-

tions like filter, join, group-by, etc. We can implement TPC-H 

Query 2 in such a way. 

Query 2 finds which supplier should be selected to place an order 

for a given part in a given region. It contains multi-way joins, an 

aggregation, and a subquery. The script is listed below. 

// Here are all the extracts that we need. 

//   (Local filters have been pushed into  

//    the extractors) 

REGION =  

  EXTRACT r_regionkey, r_name 

  FROM "region.tbl"  

  USING RegionExtractor;    

NATION =  

  EXTRACT n_nationkey, n_name, n_regionkey   

  FROM "nation.tbl"  

  USING NationExtractor;            

SUPPLIER =  

  EXTRACT s_suppkey,s_name, s_address, 

    s_nationkey, s_phone, s_acctbal, s_commen 

  FROM "supplier.tbl"  

  USING SupplierExtractor;  



 

PARTSUPP =  

  EXTRACT ps_partkey, ps_suppkey, ps_supplycost  

  FROM "partsupp.tbl" 

  USING PartSuppExtractor;            

PART =  

  EXTRACT p_partkey, p_mfgr 

  FROM “part.tbl" 

  USING PartExtractor; 

 

// Join region, nation, and, supplier  

//   (Retain only the key of supplier) 

RNS_JOIN =  

  SELECT s_suppkey, n_name 

  FROM region, nation, supplier  

  WHERE r_regionkey == n_regionkey  

    AND n_nationkey == s_nationkey;            

 

// Now join in part and partsupp 

RNSPS_JOIN =  

  SELECT p_partkey, ps_supplycost, 

         ps_suppkey, p_mfgr, n_name 

  FROM part, partsupp, rns_join 

  WHERE p_partkey == ps_partkey 

    AND s_suppkey == ps_suppkey;            

 

// Finish subquery so we get the min costs  

SUBQ =  

  SELECT p_partkey AS subq_partkey, 

         MIN(ps_supplycost) AS min_cost 

  FROM rnsps_join  

  GROUP BY p_partkey;              

 

// Finish computation of main query 

//   (Join with subquery and join with supplier 

//    again to get the required output columns) 

RESULT =  

  SELECT s_acctbal, s_name, p_partkey, 

         p_mfgr, s_address, s_phone, s_comment 

  FROM rnsps_join AS lo, subq AS sq, supplier AS s 

  WHERE lo.p_partkey == sq.subq_partkey 

    AND lo.ps_supplycost == min_cost 

    AND lo.ps_suppkey == s.s_suppkey 

  ORDER BY acctbal DESC, n_name, s_name, partkey; 

 

// output result 

OUTPUT RESULT TO "tpchQ2.tbl"; 

For this complex query, the SCOPE implementation is quite sim-

ple, requiring only a few dozens of lines of code. The subquery of 

the original SQL query is rewritten as an equi-join in the script. 

We extract all necessary columns from five source table files, 

using customized extractors (not shown, due to space limitation). 

All local filters have been pushed into the corresponding extrac-

tors. The join result of the five tables, RNSPS_JOIN, is first used 

to calculate the minimal supply cost per part, which is then joined 

with the join result RNSPS_JOIN and supplier table to retrieve all 

output columns. 

The complete execution plan generated by SCOPE is fairly so-

phisticated. Instead of showing every detail, Figure 7 shows an 

overview of the execution plan. Both the join result, shown as 

RNSPS_JOIN in the figure and the result of the supplier extractor 

are used twice. 

The plan achieves maximum degree of parallelism by utilizing all 

the machines to extract source table files and partitioning large 

input data sets so that each machine is busy with computation. 

 

We drill into the dashed part in Figure 7 and show the details of 

the subplan in Figure 8. For presentation purposes, the plan shown 

uses a degree of parallelism of three. The actual plan‟s degree of 

parallelism depends on several factors including the number of 

machines available, the amount of data processed, etc.  

We work through the subplan by stages. 

1. Join: The join predicate of this stage is s_suppkey == 

ps_suppkey. Before this stage, both inputs of the join have 

been partitioned by s_suppkey and ps_suppkey, respectively. 

Each join vertex takes two matching partitions and generates 

the local join result.  

2. Partial aggregation: In this stage, partial aggregation is ap-

plied to the local join results at the rack level. 

3. Distribute: Each local aggregated result is partitioned on the 

group-by column, p_partkey. 

4. Full aggregation: Each partition can safely calculate the final 

aggregation in parallel. This groups all (partially aggregated) 

rows with the same p_partkey into the same partition.   

5. Distribute: The fully aggregated result is partitioned by the 

next join column, subq_partkey, in parallel. 

6. Merge: Each vertex merges corresponding partitions in paral-

lel in order to prepare a join partition for one join input. 

7. Distribute: In this stage, the same join result of RNSPS_JOIN 

is partitioned by the next join column, p_partkey, in parallel. 

8. Merge: Each vertex merges corresponding partitions in paral-

lel in order to prepare a join partition for the other join input. 

9. Join: The matching partitions from both inputs are joined in 

parallel. The join results are consumed by the following stag-

es, also in parallel. 

Figure 7: Overall Execution Plan for TPC-H Query 2 
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5.3 Scalability 
In this section, we show how query performance scales with clus-

ters with different sizes and databases with different scale factors, 

respectively. We report performance trends rather than actual 

elapsed times. 

  

In the first experiment, we ran both Q1 and Q2 against the 1TB 

TPC-H database. We changed the cluster size by limiting the 

number of machines used for query execution. We use query 

elapsed times of Q1 and Q2 on a cluster of 20 machines as base 

lines, respectively, and show performance ratio (elapsed time / 

base line) for different cluster configurations. As shown in Figure 

9 which uses a log scale on the axis of performance ratio, query 

performance for both queries scales linearly with cluster size. 

 

In the second experiment, we ran both queries on the full cluster 

but against databases of different sizes. We use the elapsed times 

of Q1 and Q2 against the 10GB TPC-H database as the base lines. 

In fact, when querying against the 10GB database, since the data 

file is relatively small, not all the machines on the cluster are uti-

lized. Nevertheless, as shown in Figure 10, query performance for 

both queries scales linearly with input size. 

6. RELATED WORK 
SCOPE is heavily influenced by SQL but its target applications 

and execution environment differ from traditional database sys-

tems. SCOPE is designed for easy and efficient processing of 

massive amounts of data stored in distributed, sequential files. It 

provides efficient query processing functionality. The execution 

Figure 10: Query Performance with Different Database 
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strategies used owe much to earlier work on query processing in 

parallel and distributed database systems [9]. 

All companies operating internet-scale services have the need to 

store and process massive data sets and have developed their own 

system for this purpose. Google popularized the map-reduce pro-

gramming model. Based on what has been published in the open 

literature, their software stack consists of Google File System [8] 

and Bigtable [3] for storage, the MapReduce execution environ-

ment [5] with users writing MapReduce applications in C++ or 

Sawzall [11]. A MapReduce application written in C++ takes 

many more lines of code than the corresponding application ex-

pressed in SCOPE. For example, the word count application used 

as an example in [5] requires about 70 lines of C++ code but only 

five or six lines of SCOPE code.  

Yahoo! also has a software stack designed for distributed 

processing of massive data sets.  Users write applications in a 

language called Pig Latin [10] [1]. A Pig Latin program is com-

piled by the Pig system into a sequence of MapReduce operators 

that are executed using Hadoop [1], an open-source implementa-

tion of MapReduce. Pig Latin is a dataflow language using a 

nested data model. Each step in a program specifies a single, high-

level data transformation. A complex computation is expressed as 

a series of such transformations.  Yahoo! also has a more power-

ful Map-Reduce-Merge execution environment but it is apparently 

not the execution environment used by the Pig system. 

Both Google and Yahoo! use a MapReduce execution environ-

ment. MapReduce is very rigid, forcing every computation to be 

structured as a sequence of map-reduce pairs. The Cosmos execu-

tion environment is significantly more flexible, handling execu-

tion of any computation that can be expressed as an acyclic dataf-

low graph.  

7. CONCLUSION 
In this paper, we present a new scripting language SCOPE for 

web-scale data analysis on large clusters of hundreds or thousands 

of machines. SCOPE has a strong resemblance to SQL – an inten-

tional design choice. The language is high-level and declarative so 

that the SCOPE compiler and optimizer can optimize SCOPE 

scripts and improve them over time. All the hardware and imple-

mentation details are transparent to users. SCOPE is also highly 

extensible. Users can easily create customized extractors, proces-

sors, aggregators, and combiners by extending corresponding 

built-in C# components. Such extensions allow users to efficiently 

solve problems that are otherwise difficult to express in SQL. The 

parallel execution plans generated by the SCOPE compiler and 

optimizer fully utilize the cluster. Experiments confirm that query 

performance scales linearly with cluster and data sizes. 
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